This document lists primary analyses in order in the following paper:

Freedman, G. & Dainer-Best, J. (2022). Who is more willing to engage in social rejection? The roles of self-esteem, rejection sensitivity, and negative affect in social rejection decisions.

This paper has been accepted in The Journal of Social Psychology; a pre-print can be found at https://doi.org/10.31234/osf.io/jdx2q

knitr::opts_chunk$set(echo = TRUE, 
                      message = FALSE)
if(! require(pacman)) install.packages("pacman")
## Loading required package: pacman
pacman::p_load(lme4, here, gt, arm, corrr, tidyverse)
here::i_am("Emotions and Rejection.Rproj")

Study 1a

ear1 <- read_csv(here::here("data and codebooks", "study1a_processed.csv"))

ear1 <- ear1 %>% filter(filter == 1)

As predicted, self-esteem was negatively correlated with forecasted difficulty of engaging in rejection

cor.test(ear1$OverallDifficulty_Avg, ear1$RosenbergSelfEsteem_Sum)
## 
##  Pearson's product-moment correlation
## 
## data:  ear1$OverallDifficulty_Avg and ear1$RosenbergSelfEsteem_Sum
## t = -4.9666, df = 209, p-value = 1.414e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.4406391 -0.1985528
## sample estimates:
##        cor 
## -0.3249079

and [self-esteem was] negatively correlated with forecasting negative emotions in response to thinking about hypothetical rejection

cor.test(ear1$OverallNegEmo_Avg, ear1$RosenbergSelfEsteem_Sum)
## 
##  Pearson's product-moment correlation
## 
## data:  ear1$OverallNegEmo_Avg and ear1$RosenbergSelfEsteem_Sum
## t = -6.2881, df = 209, p-value = 1.848e-09
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.5066335 -0.2788108
## sample estimates:
##        cor 
## -0.3988589

contrary to hypotheses, self-esteem was not associated with likelihood of engaging in rejection in the vignettes

cor.test(ear1$OverallLikelyEnd_Avg, ear1$RosenbergSelfEsteem_Sum)
## 
##  Pearson's product-moment correlation
## 
## data:  ear1$OverallLikelyEnd_Avg and ear1$RosenbergSelfEsteem_Sum
## t = 0.69969, df = 204, p-value = 0.4849
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.08836291  0.18439735
## sample estimates:
##        cor 
## 0.04892943

Self-esteem was also not associated with percent of relationships participants had ended

cor.test(ear1$PercentRelationshipsYouEnded, ear1$RosenbergSelfEsteem_Sum)
## 
##  Pearson's product-moment correlation
## 
## data:  ear1$PercentRelationshipsYouEnded and ear1$RosenbergSelfEsteem_Sum
## t = -1.8071, df = 153, p-value = 0.07272
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.29547328  0.01339478
## sample estimates:
##        cor 
## -0.1445587

there was a positive correlation between general distress and forecasted difficulty of engaging in rejection

cor.test(ear1$MASQ_GD, ear1$OverallDifficulty_Avg)
## 
##  Pearson's product-moment correlation
## 
## data:  ear1$MASQ_GD and ear1$OverallDifficulty_Avg
## t = 4.8644, df = 212, p-value = 2.237e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1908661 0.4326033
## sample estimates:
##       cor 
## 0.3168713

there was no association between general distress and the overall likelihood of rejecting in the vignettes

cor.test(ear1$MASQ_GD, ear1$OverallLikelyEnd_Avg)
## 
##  Pearson's product-moment correlation
## 
## data:  ear1$MASQ_GD and ear1$OverallLikelyEnd_Avg
## t = 0.24292, df = 207, p-value = 0.8083
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1191061  0.1522472
## sample estimates:
##        cor 
## 0.01688137

An exploratory linear mixed effects model showed, however, that there was an interaction between relationship type and general distress in the prediction of likelihood of rejecting

reltype_gd_likelihood <- ear1 %>% 
  dplyr::select(ID, MASQ_GD, 
         LikelihoodEndingFriendships_Avg,
         LikelihoodEndingRomantic_Avg) %>%
  pivot_longer(
    cols = c(LikelihoodEndingFriendships_Avg,
             LikelihoodEndingRomantic_Avg), 
    names_to = "RelationshipType", 
    values_to = "LikelihoodEnding") %>%
  mutate(
    RelationshipType = 
      factor(RelationshipType,
             levels =
               c("LikelihoodEndingFriendships_Avg", 
                 "LikelihoodEndingRomantic_Avg"),
             labels = c("Friendship", "Romantic"))) %>%
  na.omit()
summary(nlme::lme(LikelihoodEnding ~ RelationshipType * MASQ_GD, random = ~ 1 | ID, data = reltype_gd_likelihood))
## Linear mixed-effects model fit by REML
##   Data: reltype_gd_likelihood 
##        AIC      BIC    logLik
##   820.0477 844.1739 -404.0239
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept)  Residual
## StdDev:   0.3467155 0.5335001
## 
## Fixed effects:  LikelihoodEnding ~ RelationshipType * MASQ_GD 
##                                       Value  Std.Error  DF   t-value p-value
## (Intercept)                       3.1258980 0.14031235 206 22.278138  0.0000
## RelationshipTypeRomantic          0.9021859 0.16638223 206  5.422369  0.0000
## MASQ_GD                           0.0107422 0.00456949 206  2.350851  0.0197
## RelationshipTypeRomantic:MASQ_GD -0.0198782 0.00541850 206 -3.668576  0.0003
##  Correlation: 
##                                  (Intr) RltnTR MASQ_G
## RelationshipTypeRomantic         -0.593              
## MASQ_GD                          -0.949  0.563       
## RelationshipTypeRomantic:MASQ_GD  0.563 -0.949 -0.593
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -3.11833516 -0.52844891  0.03927846  0.62744346  1.84277314 
## 
## Number of Observations: 416
## Number of Groups: 208
model_reltype_gd_likelihood <- lme4::lmer(
  LikelihoodEnding ~ RelationshipType * MASQ_GD + (1 | ID), data = reltype_gd_likelihood)
#summary(model_reltype_gd_likelihood)
model_reltype_gd_likelihood.sim <- arm::sim(model_reltype_gd_likelihood)
#simulated uncertainty for fixed effects b weights
fixef.model_reltype_gd_likelihood.sim <- lme4::fixef(model_reltype_gd_likelihood.sim)
# colnames(fixef.model_reltype_gd_likelihood.sim)
quantile(fixef.model_reltype_gd_likelihood.sim[, 4], # interaction
         probs = c(.025, .975))
##        2.5%       97.5% 
## -0.02857632 -0.01052478
quantile(fixef.model_reltype_gd_likelihood.sim[, 2], # RelType
         probs = c(.025, .975))
##      2.5%     97.5% 
## 0.5852915 1.1560440

there was no association between general distress and the percent of romantic relationships ended by the participant

cor.test(ear1$MASQ_GD, ear1$PercentRelationshipsYouEnded)
## 
##  Pearson's product-moment correlation
## 
## data:  ear1$MASQ_GD and ear1$PercentRelationshipsYouEnded
## t = 1.6013, df = 156, p-value = 0.1113
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.02955896  0.27779272
## sample estimates:
##       cor 
## 0.1271683

linear mixed effects model with predictors of general distress and whether rejection was explicit or passive found no effect of general distress on likelihood of rejection

gdrejtype_data <- ear1 %>% 
  select(ID, MASQ_GD, OverallLikelyExplicit_Avg,
         OverallLikelyGhost_Avg) %>%
  pivot_longer(cols = c(OverallLikelyExplicit_Avg,
                        OverallLikelyGhost_Avg),
               names_to = "RejectionType",
               values_to = "Likelihood_Avg") %>%
  mutate(RejectionType = 
           factor(RejectionType,
                  levels =
                    c("OverallLikelyExplicit_Avg",
                      "OverallLikelyGhost_Avg"),
                  labels = c("Explicit", "Ghost"))) %>%
  na.omit()

gd_rejtype_likelihood <- nlme::lme(Likelihood_Avg ~ RejectionType * MASQ_GD, random = ~ 1 | ID, data = gdrejtype_data)
summary(gd_rejtype_likelihood)
## Linear mixed-effects model fit by REML
##   Data: gdrejtype_data 
##        AIC      BIC    logLik
##   992.3765 1016.646 -490.1882
## 
## Random effects:
##  Formula: ~1 | ID
##          (Intercept)  Residual
## StdDev: 3.629812e-05 0.7456459
## 
## Fixed effects:  Likelihood_Avg ~ RejectionType * MASQ_GD 
##                                Value  Std.Error  DF   t-value p-value
## (Intercept)                 3.629775 0.16234462 211 22.358456  0.0000
## RejectionTypeGhost         -0.843486 0.22958996 211 -3.673882  0.0003
## MASQ_GD                    -0.001333 0.00529821 211 -0.251620  0.8016
## RejectionTypeGhost:MASQ_GD  0.005871 0.00749280 211  0.783555  0.4342
##  Correlation: 
##                            (Intr) RjctTG MASQ_G
## RejectionTypeGhost         -0.707              
## MASQ_GD                    -0.949  0.671       
## RejectionTypeGhost:MASQ_GD  0.671 -0.949 -0.707
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.68166049 -0.62254326  0.02532607  0.69454474  2.40617999 
## 
## Number of Observations: 426
## Number of Groups: 213
gd_rejtype_likelihood <- lme4::lmer(Likelihood_Avg ~ RejectionType * MASQ_GD + (1 | ID), data = gdrejtype_data)
#summary(gd_rejtype_likelihood)
gd_rejtype_likelihood.sim <- arm::sim(gd_rejtype_likelihood)
#simulated uncertainty for fixed effects
fixef.gd_rejtype_likelihood.sim <- lme4::fixef(gd_rejtype_likelihood.sim)
# colnames(fixef.gd_rejtype_likelihood.sim)
quantile(fixef.gd_rejtype_likelihood.sim[, 4], # interaction
         probs = c(.025, .975))
##         2.5%        97.5% 
## -0.008973711  0.018922296

general distress was positively correlated with negative emotions in response to thinking about rejecting in the hypothetical scenarios

cor.test(ear1$MASQ_GD, ear1$OverallNegEmo_Avg)
## 
##  Pearson's product-moment correlation
## 
## data:  ear1$MASQ_GD and ear1$OverallNegEmo_Avg
## t = 6.1861, df = 212, p-value = 3.133e-09
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2711394 0.4989839
## sample estimates:
##       cor 
## 0.3910362

anxiety was not associated with forecasted difficulty of engaging in rejection

cor.test(ear1$MASQ_AA, ear1$OverallDifficulty_Avg)
## 
##  Pearson's product-moment correlation
## 
## data:  ear1$MASQ_AA and ear1$OverallDifficulty_Avg
## t = 1.4082, df = 212, p-value = 0.1605
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.03834226  0.22744924
## sample estimates:
##        cor 
## 0.09626935

[anxiety was not associated with] likelihood of rejecting in rejection vignettes

cor.test(ear1$MASQ_AA, ear1$OverallLikelyEnd_Avg)
## 
##  Pearson's product-moment correlation
## 
## data:  ear1$MASQ_AA and ear1$OverallLikelyEnd_Avg
## t = 0.20995, df = 207, p-value = 0.8339
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1213642  0.1500083
## sample estimates:
##        cor 
## 0.01459073

[anxiety was not associated with] the percent of romantic relationships ended by the participant

cor.test(ear1$MASQ_AA, ear1$PercentRelationshipsYouEnded)
## 
##  Pearson's product-moment correlation
## 
## data:  ear1$MASQ_AA and ear1$PercentRelationshipsYouEnded
## t = 1.1816, df = 156, p-value = 0.2392
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.06288014  0.24669727
## sample estimates:
##       cor 
## 0.0941849

The hypothesis that individuals with more anxiety symptoms would be more likely to engage in ghosting than explicit rejection was likewise not supported

aarejtype_data <- ear1 %>% 
  select(ID, MASQ_AA, OverallLikelyExplicit_Avg,
         OverallLikelyGhost_Avg) %>%
  pivot_longer(cols = c(OverallLikelyExplicit_Avg,
                        OverallLikelyGhost_Avg),
               names_to = "RejectionType",
               values_to = "Likelihood_Avg") %>%
  mutate(RejectionType = 
           factor(RejectionType,
                  levels =
                    c("OverallLikelyExplicit_Avg",
                      "OverallLikelyGhost_Avg"),
                  labels = c("Explicit", "Ghost"))) %>%
  na.omit()

aa_rejtype_likelihood <- nlme::lme(Likelihood_Avg ~ RejectionType * MASQ_AA, random = ~ 1 | ID, data = aarejtype_data)
summary(aa_rejtype_likelihood)
## Linear mixed-effects model fit by REML
##   Data: aarejtype_data 
##        AIC      BIC    logLik
##   991.5845 1015.854 -489.7922
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept)  Residual
## StdDev: 1.86421e-05 0.7453446
## 
## Fixed effects:  Likelihood_Avg ~ RejectionType * MASQ_AA 
##                                Value  Std.Error  DF   t-value p-value
## (Intercept)                 3.638303 0.13891879 211 26.190146  0.0000
## RejectionTypeGhost         -0.849530 0.19646083 211 -4.324170  0.0000
## MASQ_AA                    -0.002170 0.00592797 211 -0.366139  0.7146
## RejectionTypeGhost:MASQ_AA  0.008113 0.00838342 211  0.967684  0.3343
##  Correlation: 
##                            (Intr) RjctTG MASQ_A
## RejectionTypeGhost         -0.707              
## MASQ_AA                    -0.930  0.658       
## RejectionTypeGhost:MASQ_AA  0.658 -0.930 -0.707
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.64706643 -0.63121991  0.01211365  0.69449085  2.20858081 
## 
## Number of Observations: 426
## Number of Groups: 213
aa_rejtype_likelihood <- lme4::lmer(Likelihood_Avg ~ RejectionType * MASQ_AA + (1 | ID), data = aarejtype_data)
#summary(aa_rejtype_likelihood)
aa_rejtype_likelihood.sim <- arm::sim(aa_rejtype_likelihood)
#simulated uncertainty for fixed effects
fixef.aa_rejtype_likelihood.sim <- lme4::fixef(aa_rejtype_likelihood.sim)
#colnames(fixef.aa_rejtype_likelihood.sim)
quantile(fixef.aa_rejtype_likelihood.sim[, 4], # interaction
         probs = c(.025, .975))
##         2.5%        97.5% 
## -0.007882003  0.026918718

anxiety symptoms were positively correlated with negative emotions in response to thinking about rejecting in the hypothetical scenarios

cor.test(ear1$MASQ_AA, ear1$OverallNegEmo_Avg)
## 
##  Pearson's product-moment correlation
## 
## data:  ear1$MASQ_AA and ear1$OverallNegEmo_Avg
## t = 3.7504, df = 212, p-value = 0.0002278
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1193097 0.3711357
## sample estimates:
##       cor 
## 0.2494349

There was a positive correlation between anhedonic depressive symptoms and forecasted difficulty of engaging in rejection

cor.test(ear1$MASQ_AD, ear1$OverallDifficulty_Avg)
## 
##  Pearson's product-moment correlation
## 
## data:  ear1$MASQ_AD and ear1$OverallDifficulty_Avg
## t = 2.4575, df = 212, p-value = 0.01479
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03305056 0.29398397
## sample estimates:
##       cor 
## 0.1664294

there was no association between anhedonic depressive symptoms and the likelihood of rejecting in the vignettes

cor.test(ear1$MASQ_AD, ear1$OverallLikelyEnd_Avg)
## 
##  Pearson's product-moment correlation
## 
## data:  ear1$MASQ_AD and ear1$OverallLikelyEnd_Avg
## t = -0.5045, df = 207, p-value = 0.6144
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1699497  0.1011523
## sample estimates:
##        cor 
## -0.0350434

[there was no association between anhedonic depressive symptoms and] the percent of romantic relationships ended by the participant

cor.test(ear1$MASQ_AD, ear1$PercentRelationshipsYouEnded)
## 
##  Pearson's product-moment correlation
## 
## data:  ear1$MASQ_AD and ear1$PercentRelationshipsYouEnded
## t = 0.65966, df = 156, p-value = 0.5104
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1042571  0.2071760
## sample estimates:
##        cor 
## 0.05274182

a linear mixed effects model with predictors of anhedonic depressive symptoms and whether rejection was explicit or passive found no effect of anhedonic depressive symptoms on likelihood of rejection

adrejtype_data <- ear1 %>% 
  select(ID, MASQ_AD, OverallLikelyExplicit_Avg,
         OverallLikelyGhost_Avg) %>%
  pivot_longer(cols = c(OverallLikelyExplicit_Avg,
                        OverallLikelyGhost_Avg),
               names_to = "RejectionType",
               values_to = "Likelihood_Avg") %>%
  mutate(RejectionType = 
           factor(RejectionType,
                  levels =
                    c("OverallLikelyExplicit_Avg",
                      "OverallLikelyGhost_Avg"),
                  labels = c("Explicit", "Ghost"))) %>%
  na.omit()

ad_rejtype_likelihood <- nlme::lme(Likelihood_Avg ~ RejectionType * MASQ_AD, random = ~ 1 | ID, data = adrejtype_data)
summary(ad_rejtype_likelihood)
## Linear mixed-effects model fit by REML
##   Data: adrejtype_data 
##        AIC      BIC    logLik
##   991.5338 1015.804 -489.7669
## 
## Random effects:
##  Formula: ~1 | ID
##          (Intercept)  Residual
## StdDev: 3.825843e-05 0.7454856
## 
## Fixed effects:  Likelihood_Avg ~ RejectionType * MASQ_AD 
##                                Value  Std.Error  DF   t-value p-value
## (Intercept)                 3.776210 0.19502261 211 19.362933  0.0000
## RejectionTypeGhost         -0.838771 0.27580361 211 -3.041188  0.0027
## MASQ_AD                    -0.006150 0.00624936 211 -0.984027  0.3262
## RejectionTypeGhost:MASQ_AD  0.005513 0.00883794 211  0.623798  0.5334
##  Correlation: 
##                            (Intr) RjctTG MASQ_A
## RejectionTypeGhost         -0.707              
## MASQ_AD                    -0.965  0.682       
## RejectionTypeGhost:MASQ_AD  0.682 -0.965 -0.707
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -2.5775516 -0.5997020 -0.0186325  0.6921174  2.3324050 
## 
## Number of Observations: 426
## Number of Groups: 213
ad_rejtype_likelihood <- lme4::lmer(Likelihood_Avg ~ RejectionType * MASQ_AD + (1 | ID), data = adrejtype_data)
#summary(ad_rejtype_likelihood)
ad_rejtype_likelihood.sim <- arm::sim(ad_rejtype_likelihood)
#simulated uncertainty for fixed effects
fixef.ad_rejtype_likelihood.sim <- lme4::fixef(ad_rejtype_likelihood.sim)
#colnames(fixef.ad_rejtype_likelihood.sim)
quantile(fixef.ad_rejtype_likelihood.sim[, 4], # interaction
         probs = c(.025, .975))
##        2.5%       97.5% 
## -0.01143030  0.02163718

anhedonic depressive symptoms were positively correlated with negative emotions in response to thinking about rejecting in the hypothetical scenarios

cor.test(ear1$MASQ_AD, ear1$OverallNegEmo_Avg)
## 
##  Pearson's product-moment correlation
## 
## data:  ear1$MASQ_AD and ear1$OverallNegEmo_Avg
## t = 4.1061, df = 212, p-value = 5.743e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1424953 0.3912970
## sample estimates:
##       cor 
## 0.2714247

Rejection sensitivity was significantly positively correlated with forecasted difficulty of engaging in rejection

cor.test(ear1$RSQ_Score_Fixed, ear1$OverallDifficulty_Avg)
## 
##  Pearson's product-moment correlation
## 
## data:  ear1$RSQ_Score_Fixed and ear1$OverallDifficulty_Avg
## t = 3.5806, df = 210, p-value = 0.0004259
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1086302 0.3628878
## sample estimates:
##      cor 
## 0.239868

[Rejection sensitivity was significantly positively correlated with] forecasted negative emotions in response to thinking about hypothetical rejection

cor.test(ear1$RSQ_Score_Fixed, ear1$OverallNegEmo_Avg)
## 
##  Pearson's product-moment correlation
## 
## data:  ear1$RSQ_Score_Fixed and ear1$OverallNegEmo_Avg
## t = 2.9907, df = 210, p-value = 0.003116
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.06925818 0.32793827
## sample estimates:
##       cor 
## 0.2021209

Rejection sensitivity was not associated with likelihood of engaging in rejection

cor.test(ear1$RSQ_Score_Fixed, ear1$OverallLikelyEnd_Avg)
## 
##  Pearson's product-moment correlation
## 
## data:  ear1$RSQ_Score_Fixed and ear1$OverallLikelyEnd_Avg
## t = -0.23948, df = 205, p-value = 0.811
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1527457  0.1199195
## sample estimates:
##         cor 
## -0.01672401

Self-esteem was associated with forecasts of overall difficulty across vignettes

mod_rse_diff <- lm(data = ear1, OverallDifficulty_Avg ~ RosenbergSelfEsteem_Sum + MASQ_GD + MASQ_AD + MASQ_AA)
summary(mod_rse_diff)
## 
## Call:
## lm(formula = OverallDifficulty_Avg ~ RosenbergSelfEsteem_Sum + 
##     MASQ_GD + MASQ_AD + MASQ_AA, data = ear1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.78844 -0.65061  0.08807  0.62537  2.45789 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              5.914008   0.779673   7.585 1.12e-12 ***
## RosenbergSelfEsteem_Sum -0.044596   0.015869  -2.810  0.00543 ** 
## MASQ_GD                  0.030146   0.010910   2.763  0.00624 ** 
## MASQ_AD                 -0.009047   0.009761  -0.927  0.35509    
## MASQ_AA                 -0.026932   0.010000  -2.693  0.00766 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9505 on 206 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.149,  Adjusted R-squared:  0.1325 
## F-statistic: 9.019 on 4 and 206 DF,  p-value: 9.881e-07
confint(mod_rse_diff)
##                                2.5 %       97.5 %
## (Intercept)              4.376846439  7.451169025
## RosenbergSelfEsteem_Sum -0.075882873 -0.013309207
## MASQ_GD                  0.008637041  0.051655021
## MASQ_AD                 -0.028291018  0.010197161
## MASQ_AA                 -0.046647029 -0.007216917

[Self-esteem was associated with] overall negative emotions

mod_rse_negemo <- lm(data = ear1, OverallNegEmo_Avg ~ RosenbergSelfEsteem_Sum + MASQ_GD + MASQ_AD + MASQ_AA)
summary(mod_rse_negemo)
## 
## Call:
## lm(formula = OverallNegEmo_Avg ~ RosenbergSelfEsteem_Sum + MASQ_GD + 
##     MASQ_AD + MASQ_AA, data = ear1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.51575 -0.45227  0.09141  0.41719  2.00174 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              4.650065   0.591122   7.866 2.02e-13 ***
## RosenbergSelfEsteem_Sum -0.028165   0.012031  -2.341   0.0202 *  
## MASQ_GD                  0.018016   0.008271   2.178   0.0305 *  
## MASQ_AD                  0.004956   0.007400   0.670   0.5038    
## MASQ_AA                 -0.003067   0.007582  -0.405   0.6862    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7207 on 206 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.183,  Adjusted R-squared:  0.1671 
## F-statistic: 11.53 on 4 and 206 DF,  p-value: 1.808e-08
confint(mod_rse_negemo)
##                                2.5 %       97.5 %
## (Intercept)              3.484638951  5.815490073
## RosenbergSelfEsteem_Sum -0.051885509 -0.004444196
## MASQ_GD                  0.001708355  0.034323185
## MASQ_AD                 -0.009634620  0.019545862
## MASQ_AA                 -0.018014471  0.011880154

Rejection sensitivity was not associated with either outcome

summary(lm(data = ear1, OverallDifficulty_Avg ~ RSQ_Score_Fixed + MASQ_GD + MASQ_AD + MASQ_AA))
## 
## Call:
## lm(formula = OverallDifficulty_Avg ~ RSQ_Score_Fixed + MASQ_GD + 
##     MASQ_AD + MASQ_AA, data = ear1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.75411 -0.67303 -0.01492  0.57863  2.58810 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      3.693e+00  2.896e-01  12.751  < 2e-16 ***
## RSQ_Score_Fixed  3.212e-02  1.457e-02   2.205 0.028524 *  
## MASQ_GD          3.714e-02  1.001e-02   3.711 0.000266 ***
## MASQ_AD         -1.020e-06  9.149e-03   0.000 0.999911    
## MASQ_AA         -1.882e-02  9.990e-03  -1.884 0.060928 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9556 on 207 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.1275, Adjusted R-squared:  0.1107 
## F-statistic: 7.564 on 4 and 207 DF,  p-value: 1.048e-05
summary(lm(data = ear1, OverallNegEmo_Avg ~ RSQ_Score_Fixed + MASQ_GD + MASQ_AD + MASQ_AA))
## 
## Call:
## lm(formula = OverallNegEmo_Avg ~ RSQ_Score_Fixed + MASQ_GD + 
##     MASQ_AD + MASQ_AA, data = ear1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.44977 -0.41719  0.07895  0.50707  1.92410 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     3.317749   0.222198  14.931  < 2e-16 ***
## RSQ_Score_Fixed 0.012969   0.011174   1.161  0.24712    
## MASQ_GD         0.023899   0.007678   3.113  0.00212 ** 
## MASQ_AD         0.009854   0.007018   1.404  0.16182    
## MASQ_AA         0.001798   0.007664   0.235  0.81474    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7331 on 207 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.1563, Adjusted R-squared:   0.14 
## F-statistic: 9.585 on 4 and 207 DF,  p-value: 3.949e-07

Correlation table

From Study 1a for the correlation table

ear1 %>%
      select(MASQ_AD, MASQ_AA, MASQ_GD,
             RosenbergSelfEsteem_Sum, 
             RSQ_Score_Fixed,
             DifficultyEndFriendship_Avg, 
             NegEmo_Friendship_Avg,
             DifficultyEndRomantic_Avg, 
             NegEmo_Romantic_Avg) %>%
  corrr::correlate(use = "pairwise.complete.obs", 
                 method = "pearson") %>%
  dplyr::select(term, DifficultyEndFriendship_Avg, 
         NegEmo_Friendship_Avg,
         DifficultyEndRomantic_Avg, 
         NegEmo_Romantic_Avg) %>%
  filter(term %in% c("MASQ_AD", "MASQ_AA", "MASQ_GD",
             "RosenbergSelfEsteem_Sum",
             "RSQ_Score_Fixed")) %>%
  corrr::fashion() %>%
  gt::gt()
term DifficultyEndFriendship_Avg NegEmo_Friendship_Avg DifficultyEndRomantic_Avg NegEmo_Romantic_Avg
MASQ_AD .18 .26 .12 .24
MASQ_AA .04 .18 .13 .27
MASQ_GD .22 .30 .34 .41
RosenbergSelfEsteem_Sum -.28 -.33 -.30 -.39
RSQ_Score_Fixed .24 .18 .19 .19
# and the p-value / stats on them
ear1 %>%
  select(DifficultyEndFriendship_Avg, 
         NegEmo_Friendship_Avg,
         DifficultyEndRomantic_Avg, 
         NegEmo_Romantic_Avg, 
         MASQ_AD, MASQ_AA, MASQ_GD,
         RosenbergSelfEsteem_Sum, 
         RSQ_Score_Fixed) %>%
  pivot_longer(
    cols = c(DifficultyEndFriendship_Avg, 
             NegEmo_Friendship_Avg,
             DifficultyEndRomantic_Avg, 
             NegEmo_Romantic_Avg), 
    names_to = "outcomes", 
    values_to = "out_val") %>%
  pivot_longer(
    cols = c(MASQ_AD, MASQ_AA, MASQ_GD,
           RosenbergSelfEsteem_Sum, 
           RSQ_Score_Fixed), 
    names_to = "predictors",
    values_to = "pred_val"
  ) %>%
  nest(data = -c(outcomes, predictors)) %>%
  mutate(correlation = map(data, 
                  ~ cor.test(.x$out_val, .x$pred_val)), 
         tidied = map(correlation, broom::tidy)) %>%
  unnest(tidied) %>%
  select(outcomes, predictors, df = parameter,
         estimate, conf.low, conf.high, p.value) %>%
  gt::gt() %>%
  gt::cols_merge(columns = c(estimate, conf.low, 
                             conf.high), 
                 pattern = "{1} [{2}, {3}]") %>%
  gt::cols_label(
    estimate = md("*r* [95% CI]"),
    df = md("*df*"),
    p.value = md("*p*")
  ) %>%
  gt::sub_small_vals(columns = c(estimate, 
                                 conf.low, 
                                 conf.high), 
                     threshold = .01) %>%
  gt::sub_small_vals(columns = p.value, 
                     threshold = .001, 
                     small_pattern = "<.001") %>%
  gt::fmt_number(p.value, decimals = 3) %>%
  gt::fmt_number(c(estimate, conf.low, conf.high),
                 decimals = 2)
outcomes predictors df r [95% CI] p
DifficultyEndFriendship_Avg MASQ_AD 212 0.18 [0.05, 0.31] 0.009
DifficultyEndFriendship_Avg MASQ_AA 212 0.04 [−0.09, 0.17] 0.557
DifficultyEndFriendship_Avg MASQ_GD 212 0.22 [0.09, 0.35] 0.001
DifficultyEndFriendship_Avg RosenbergSelfEsteem_Sum 209 −0.28 [−0.40, −0.15] <.001
DifficultyEndFriendship_Avg RSQ_Score_Fixed 210 0.24 [0.10, 0.36] <.001
NegEmo_Friendship_Avg MASQ_AD 212 0.26 [0.13, 0.38] <.001
NegEmo_Friendship_Avg MASQ_AA 212 0.18 [0.05, 0.31] 0.008
NegEmo_Friendship_Avg MASQ_GD 212 0.30 [0.17, 0.41] <.001
NegEmo_Friendship_Avg RosenbergSelfEsteem_Sum 209 −0.33 [−0.45, −0.20] <.001
NegEmo_Friendship_Avg RSQ_Score_Fixed 210 0.18 [0.04, 0.30] 0.010
DifficultyEndRomantic_Avg MASQ_AD 212 0.12 [−0.02, 0.25] 0.087
DifficultyEndRomantic_Avg MASQ_AA 212 0.13 [0.00, 0.26] 0.057
DifficultyEndRomantic_Avg MASQ_GD 212 0.34 [0.22, 0.45] <.001
DifficultyEndRomantic_Avg RosenbergSelfEsteem_Sum 209 −0.30 [−0.41, −0.17] <.001
DifficultyEndRomantic_Avg RSQ_Score_Fixed 210 0.19 [0.06, 0.32] 0.006
NegEmo_Romantic_Avg MASQ_AD 212 0.24 [0.11, 0.36] <.001
NegEmo_Romantic_Avg MASQ_AA 212 0.27 [0.14, 0.39] <.001
NegEmo_Romantic_Avg MASQ_GD 212 0.41 [0.30, 0.52] <.001
NegEmo_Romantic_Avg RosenbergSelfEsteem_Sum 209 −0.39 [−0.50, −0.27] <.001
NegEmo_Romantic_Avg RSQ_Score_Fixed 210 0.19 [0.06, 0.32] 0.006

Study 1b

ear2 <- read_csv(here::here("data and codebooks", "study1b_processed.csv"))
ear2 <- ear2 %>% filter(filter == 1)

anxiety symptoms were not significantly associated at the preregistered criterion level with forecasting negative emotions for explicit rejection

cor.test(ear2$MASQ_AA, ear2$Explicit_OverallNegEmo_Avg)
## 
##  Pearson's product-moment correlation
## 
## data:  ear2$MASQ_AA and ear2$Explicit_OverallNegEmo_Avg
## t = 2.7597, df = 262, p-value = 0.006193
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.04832402 0.28305416
## sample estimates:
##       cor 
## 0.1680705

[anxiety symptoms were not significantly associated at the preregistered criterion level with forecasting negative emotions for] ghosting

cor.test(ear2$MASQ_AA, ear2$Ghost_OverallNegEmo_Avg)
## 
##  Pearson's product-moment correlation
## 
## data:  ear2$MASQ_AA and ear2$Ghost_OverallNegEmo_Avg
## t = 1.7072, df = 262, p-value = 0.08898
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.0160431  0.2227929
## sample estimates:
##       cor 
## 0.1048871

The hypothesis that individuals with more anxiety symptoms would be more likely to engage in ghosting than explicit rejection was not significant at the preregistered criterion level

There was a main effect of preference to explicitly reject

anx_data <- ear2 %>% 
  dplyr::select(ID, MASQ_AA, 
                Explicit_OverallLikelyEnd_Avg,
                Ghost_OverallLikelyEnd_Avg) %>%
  pivot_longer(cols = c(Explicit_OverallLikelyEnd_Avg,
                        Ghost_OverallLikelyEnd_Avg),
               names_to = "RejectionType",
               values_to = "Likelihood_Avg") %>%
  mutate(RejectionType = factor(
    RejectionType, levels =
      c("Explicit_OverallLikelyEnd_Avg", 
        "Ghost_OverallLikelyEnd_Avg"),
    labels = c("Explicit", "Ghost"))) %>%
  na.omit()

# then run the model
anx_mod <- nlme::lme(Likelihood_Avg ~ RejectionType * MASQ_AA, random = ~ 1 | ID, data = anx_data)
summary(anx_mod)
## Linear mixed-effects model fit by REML
##   Data: anx_data 
##        AIC      BIC    logLik
##   1324.468 1350.037 -656.2341
## 
## Random effects:
##  Formula: ~1 | ID
##          (Intercept)  Residual
## StdDev: 5.022968e-05 0.8223895
## 
## Fixed effects:  Likelihood_Avg ~ RejectionType * MASQ_AA 
##                                Value  Std.Error  DF   t-value p-value
## (Intercept)                 4.419812 0.13464958 262  32.82455  0.0000
## RejectionTypeGhost         -2.274611 0.19042326 262 -11.94503  0.0000
## MASQ_AA                    -0.013334 0.00677509 262  -1.96811  0.0501
## RejectionTypeGhost:MASQ_AA  0.024156 0.00958142 262   2.52115  0.0123
##  Correlation: 
##                            (Intr) RjctTG MASQ_A
## RejectionTypeGhost         -0.707              
## MASQ_AA                    -0.927  0.655       
## RejectionTypeGhost:MASQ_AA  0.655 -0.927 -0.707
## 
## Standardized Within-Group Residuals:
##          Min           Q1          Med           Q3          Max 
## -2.326303758 -0.692852819  0.005728757  0.638303399  3.313434730 
## 
## Number of Observations: 528
## Number of Groups: 264
anx_mod <- lme4::lmer(Likelihood_Avg ~ RejectionType * MASQ_AA + (1 | ID), data = anx_data)
# summary(anx_mod)
anx_mod.sim <- arm::sim(anx_mod)
#simulated uncertainty for fixed effects
fixef.anx_mod.sim <- fixef(anx_mod.sim)
# colnames(fixef.anx_mod.sim)
quantile(fixef.anx_mod.sim[, 4], # interaction
         probs = c(.025, .975))
##        2.5%       97.5% 
## 0.008859006 0.042524213
quantile(fixef.anx_mod.sim[, 2], # RejType
         probs = c(.025, .975))
##      2.5%     97.5% 
## -2.585800 -1.996156

general distress, anxiety symptoms, and self-esteem were not significantly correlated with the percent of relationships that participants had ended

cor.test(ear2$PercentRelationshipsEnded, ear2$MASQ_GD)
## 
##  Pearson's product-moment correlation
## 
## data:  ear2$PercentRelationshipsEnded and ear2$MASQ_GD
## t = -0.23685, df = 195, p-value = 0.813
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1563838  0.1231288
## sample estimates:
##        cor 
## -0.0169588
cor.test(ear2$PercentRelationshipsEnded, ear2$MASQ_AA)
## 
##  Pearson's product-moment correlation
## 
## data:  ear2$PercentRelationshipsEnded and ear2$MASQ_AA
## t = -0.65875, df = 195, p-value = 0.5108
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.18569400  0.09328872
## sample estimates:
##         cor 
## -0.04712152
cor.test(ear2$PercentRelationshipsEnded, ear2$RosenbergSelfEsteem_Sum)
## 
##  Pearson's product-moment correlation
## 
## data:  ear2$PercentRelationshipsEnded and ear2$RosenbergSelfEsteem_Sum
## t = 0.80219, df = 193, p-value = 0.4234
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.08354243  0.19656678
## sample estimates:
##        cor 
## 0.05764663

[general distress, anxiety symptoms, and self-esteem were not significantly correlated with] the reported likelihood of ending the relationships described in the vignettes

cor.test(ear2$OverallLikelyEnd_Avg, ear2$MASQ_GD)
## 
##  Pearson's product-moment correlation
## 
## data:  ear2$OverallLikelyEnd_Avg and ear2$MASQ_GD
## t = -0.55026, df = 262, p-value = 0.5826
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.15407059  0.08710877
## sample estimates:
##         cor 
## -0.03397554
cor.test(ear2$OverallLikelyEnd_Avg, ear2$MASQ_AA)
## 
##  Pearson's product-moment correlation
## 
## data:  ear2$OverallLikelyEnd_Avg and ear2$MASQ_AA
## t = -0.41608, df = 262, p-value = 0.6777
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1459714  0.0953255
## sample estimates:
##         cor 
## -0.02569724
cor.test(ear2$OverallLikelyEnd_Avg, ear2$RosenbergSelfEsteem_Sum)
## 
##  Pearson's product-moment correlation
## 
## data:  ear2$OverallLikelyEnd_Avg and ear2$RosenbergSelfEsteem_Sum
## t = 1.0623, df = 259, p-value = 0.2891
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.05600575  0.18579632
## sample estimates:
##        cor 
## 0.06586213

[general distress, anxiety symptoms, and self-esteem were not significantly correlated with] the reported likelihood of ending the relationships described in the vignettes via explicit rejection or ghosting

cor.test(ear2$Explicit_OverallLikelyEnd_Avg, ear2$MASQ_GD)
## 
##  Pearson's product-moment correlation
## 
## data:  ear2$Explicit_OverallLikelyEnd_Avg and ear2$MASQ_GD
## t = -1.2405, df = 262, p-value = 0.2159
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.19534088  0.04472362
## sample estimates:
##         cor 
## -0.07641598
cor.test(ear2$Explicit_OverallLikelyEnd_Avg, ear2$MASQ_AA)
## 
##  Pearson's product-moment correlation
## 
## data:  ear2$Explicit_OverallLikelyEnd_Avg and ear2$MASQ_AA
## t = -2.5168, df = 262, p-value = 0.01244
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.26937378 -0.03353846
## sample estimates:
##        cor 
## -0.1536434
cor.test(ear2$Explicit_OverallLikelyEnd_Avg, ear2$RosenbergSelfEsteem_Sum)
## 
##  Pearson's product-moment correlation
## 
## data:  ear2$Explicit_OverallLikelyEnd_Avg and ear2$RosenbergSelfEsteem_Sum
## t = 1.0914, df = 259, p-value = 0.2761
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.0542035  0.1875411
## sample estimates:
##        cor 
## 0.06766181
cor.test(ear2$Ghost_OverallLikelyEnd_Avg, ear2$MASQ_GD)
## 
##  Pearson's product-moment correlation
## 
## data:  ear2$Ghost_OverallLikelyEnd_Avg and ear2$MASQ_GD
## t = 0.10715, df = 262, p-value = 0.9147
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1141984  0.1272452
## sample estimates:
##         cor 
## 0.006619885
cor.test(ear2$Ghost_OverallLikelyEnd_Avg, ear2$MASQ_AA)
## 
##  Pearson's product-moment correlation
## 
## data:  ear2$Ghost_OverallLikelyEnd_Avg and ear2$MASQ_AA
## t = 1.3556, df = 262, p-value = 0.1764
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.03765113  0.20214555
## sample estimates:
##        cor 
## 0.08345522
cor.test(ear2$Ghost_OverallLikelyEnd_Avg, ear2$RosenbergSelfEsteem_Sum)
## 
##  Pearson's product-moment correlation
## 
## data:  ear2$Ghost_OverallLikelyEnd_Avg and ear2$RosenbergSelfEsteem_Sum
## t = 0.042009, df = 259, p-value = 0.9665
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1188473  0.1239910
## sample estimates:
##         cor 
## 0.002610327

anhedonic depressive symptoms were not significantly associated with forecasting negative emotions for explicit rejection … or ghosting

cor.test(ear2$MASQ_AD, ear2$Explicit_OverallNegEmo_Avg)
## 
##  Pearson's product-moment correlation
## 
## data:  ear2$MASQ_AD and ear2$Explicit_OverallNegEmo_Avg
## t = 0.2841, df = 262, p-value = 0.7766
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1033970  0.1379838
## sample estimates:
##        cor 
## 0.01754909
cor.test(ear2$MASQ_AD, ear2$Ghost_OverallNegEmo_Avg)
## 
##  Pearson's product-moment correlation
## 
## data:  ear2$MASQ_AD and ear2$Ghost_OverallNegEmo_Avg
## t = 1.3445, df = 262, p-value = 0.18
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.03833408  0.20148948
## sample estimates:
##        cor 
## 0.08277602

Anhedonic depressive symptoms were also not associated with the percent of relationships that participants had ended

cor.test(ear2$MASQ_AD, ear2$PercentRelationshipsEnded)
## 
##  Pearson's product-moment correlation
## 
## data:  ear2$MASQ_AD and ear2$PercentRelationshipsEnded
## t = -0.30613, df = 195, p-value = 0.7598
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1612186  0.1182411
## sample estimates:
##         cor 
## -0.02191686

there was no statistical support for the hypothesis that individuals with more anhedonic depressive symptoms were more likely to engage in ghosting than explicit rejection

dep_data <- ear2 %>% 
  dplyr::select(ID, MASQ_AD, 
                Explicit_OverallLikelyEnd_Avg,
                Ghost_OverallLikelyEnd_Avg) %>%
  pivot_longer(cols = c(Explicit_OverallLikelyEnd_Avg,
                        Ghost_OverallLikelyEnd_Avg),
               names_to = "RejectionType",
               values_to = "Likelihood_Avg") %>%
  mutate(RejectionType = factor(
    RejectionType, levels =
      c("Explicit_OverallLikelyEnd_Avg", 
        "Ghost_OverallLikelyEnd_Avg"),
    labels = c("Explicit", "Ghost"))) %>%
  na.omit()

mod_AD <- nlme::lme(Likelihood_Avg ~ RejectionType * MASQ_AD, random = ~ 1 | ID, data = dep_data)
summary(mod_AD)
## Linear mixed-effects model fit by REML
##   Data: dep_data 
##        AIC      BIC    logLik
##   1330.286 1355.855 -659.1431
## 
## Random effects:
##  Formula: ~1 | ID
##          (Intercept)  Residual
## StdDev: 3.811419e-05 0.8264172
## 
## Fixed effects:  Likelihood_Avg ~ RejectionType * MASQ_AD 
##                                Value  Std.Error  DF   t-value p-value
## (Intercept)                 4.072943 0.19848995 262 20.519642  0.0000
## RejectionTypeGhost         -1.537680 0.28070718 262 -5.477878  0.0000
## MASQ_AD                     0.003019 0.00571819 262  0.527981  0.5980
## RejectionTypeGhost:MASQ_AD -0.008704 0.00808674 262 -1.076365  0.2828
##  Correlation: 
##                            (Intr) RjctTG MASQ_A
## RejectionTypeGhost         -0.707              
## MASQ_AD                    -0.967  0.683       
## RejectionTypeGhost:MASQ_AD  0.683 -0.967 -0.707
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.43438897 -0.68553094  0.03684135  0.59723585  3.18881631 
## 
## Number of Observations: 528
## Number of Groups: 264
mod_AD <- lme4::lmer(Likelihood_Avg ~ RejectionType * MASQ_AD + (1 | ID), data = dep_data)
#summary(mod_AD)
mod_AD.sim <- sim(mod_AD)

#simulated uncertainty for fixed effects
fixef.masqAD.sim <- fixef(mod_AD.sim)
colnames(fixef.masqAD.sim)
## [1] "(Intercept)"                "RejectionTypeGhost"        
## [3] "MASQ_AD"                    "RejectionTypeGhost:MASQ_AD"
quantile(fixef.masqAD.sim[, 4], # interaction
         probs = c(.025, .975))
##         2.5%        97.5% 
## -0.022162548  0.008398672

rejection sensitivity was significantly positively associated with perceived difficulty of ending relationships via explicit rejection … and ghosting

cor.test(ear2$RSQ_Score_Fixed, ear2$Explicit_OverallDifficulty_Avg)
## 
##  Pearson's product-moment correlation
## 
## data:  ear2$RSQ_Score_Fixed and ear2$Explicit_OverallDifficulty_Avg
## t = 4.0963, df = 262, p-value = 5.599e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1284147 0.3555347
## sample estimates:
##       cor 
## 0.2453382
cor.test(ear2$RSQ_Score_Fixed, ear2$Ghost_OverallDifficulty_Avg)
## 
##  Pearson's product-moment correlation
## 
## data:  ear2$RSQ_Score_Fixed and ear2$Ghost_OverallDifficulty_Avg
## t = 3.057, df = 262, p-value = 0.002467
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.06634082 0.29959613
## sample estimates:
##       cor 
## 0.1855815

rejection sensitivity was not significantly correlated with overall likelihood of ending the relationships

cor.test(ear2$RSQ_Score_Fixed, ear2$OverallLikelyEnd_Avg)
## 
##  Pearson's product-moment correlation
## 
## data:  ear2$RSQ_Score_Fixed and ear2$OverallLikelyEnd_Avg
## t = -2.7693, df = 262, p-value = 0.00602
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.28358991 -0.04890515
## sample estimates:
##        cor 
## -0.1686365

Nor was it significantly correlated with negative emotions in response to explicitly rejecting … or ghosting

cor.test(ear2$RSQ_Score_Fixed, ear2$Explicit_OverallNegEmo_Avg)
## 
##  Pearson's product-moment correlation
## 
## data:  ear2$RSQ_Score_Fixed and ear2$Explicit_OverallNegEmo_Avg
## t = 2.567, df = 262, p-value = 0.01081
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03659593 0.27221055
## sample estimates:
##       cor 
## 0.1566309
cor.test(ear2$RSQ_Score_Fixed, ear2$Ghost_OverallNegEmo_Avg)
## 
##  Pearson's product-moment correlation
## 
## data:  ear2$RSQ_Score_Fixed and ear2$Ghost_OverallNegEmo_Avg
## t = 2.7976, df = 262, p-value = 0.005531
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.05062279 0.28517256
## sample estimates:
##      cor 
## 0.170309

Scores on the RSQ were also not associated with the percent of relationships that participants had ended

cor.test(ear2$RSQ_Score_Fixed, ear2$PercentRelationshipsEnded)
## 
##  Pearson's product-moment correlation
## 
## data:  ear2$RSQ_Score_Fixed and ear2$PercentRelationshipsEnded
## t = -1.3487, df = 195, p-value = 0.179
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.23280232  0.04425516
## sample estimates:
##         cor 
## -0.09613531

Self-esteem was associated with forecasted difficulty of making explicit rejections

rse_diff <- lm(data = ear2, Explicit_OverallDifficulty_Avg ~ MASQ_AA + MASQ_AD + MASQ_GD + RosenbergSelfEsteem_Sum)
summary(rse_diff)
## 
## Call:
## lm(formula = Explicit_OverallDifficulty_Avg ~ MASQ_AA + MASQ_AD + 
##     MASQ_GD + RosenbergSelfEsteem_Sum, data = ear2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0136 -0.7293  0.0336  0.7912  2.3350 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              5.57909    0.85466   6.528 3.56e-10 ***
## MASQ_AA                 -0.01970    0.01191  -1.654   0.0993 .  
## MASQ_AD                 -0.01802    0.01000  -1.802   0.0727 .  
## MASQ_GD                  0.03001    0.01167   2.571   0.0107 *  
## RosenbergSelfEsteem_Sum -0.04308    0.01720  -2.504   0.0129 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.126 on 256 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.1235, Adjusted R-squared:  0.1098 
## F-statistic:  9.02 on 4 and 256 DF,  p-value: 7.87e-07
confint(rse_diff)
##                                2.5 %       97.5 %
## (Intercept)              3.896027942  7.262143647
## MASQ_AA                 -0.043153188  0.003752947
## MASQ_AD                 -0.037710646  0.001673081
## MASQ_GD                  0.007024778  0.052985245
## RosenbergSelfEsteem_Sum -0.076949222 -0.009204853

but [Self-esteem was not associated with] ghosting rejections

rse_diff2 <- lm(data = ear2, Ghost_OverallDifficulty_Avg ~ MASQ_AA + MASQ_AD + MASQ_GD + RosenbergSelfEsteem_Sum)
summary(rse_diff2)
## 
## Call:
## lm(formula = Ghost_OverallDifficulty_Avg ~ MASQ_AA + MASQ_AD + 
##     MASQ_GD + RosenbergSelfEsteem_Sum, data = ear2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5243 -0.8534  0.0315  0.7855  2.9048 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              4.445849   0.910655   4.882 1.85e-06 ***
## MASQ_AA                 -0.002815   0.012690  -0.222   0.8246    
## MASQ_AD                 -0.016983   0.010655  -1.594   0.1122    
## MASQ_GD                  0.028421   0.012434   2.286   0.0231 *  
## RosenbergSelfEsteem_Sum -0.017546   0.018327  -0.957   0.3393    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 256 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.06866,    Adjusted R-squared:  0.05411 
## F-statistic: 4.718 on 4 and 256 DF,  p-value: 0.001088
confint(rse_diff2)
##                                2.5 %      97.5 %
## (Intercept)              2.652520721 6.239177601
## MASQ_AA                 -0.027804730 0.022174601
## MASQ_AD                 -0.037965182 0.003998889
## MASQ_GD                  0.003935224 0.052906929
## RosenbergSelfEsteem_Sum -0.053637107 0.018545738

Rejection sensitivity was associated with the difficulty of making explicit rejections … as well as the overall likelihood of rejecting

arsq_diff <- lm(data = ear2, Explicit_OverallDifficulty_Avg ~ MASQ_AA + MASQ_AD + MASQ_GD + RSQ_Score_Fixed)
summary(arsq_diff)
## 
## Call:
## lm(formula = Explicit_OverallDifficulty_Avg ~ MASQ_AA + MASQ_AD + 
##     MASQ_GD + RSQ_Score_Fixed, data = ear2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8290 -0.6956  0.0437  0.8160  2.4208 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      3.475983   0.314003  11.070  < 2e-16 ***
## MASQ_AA         -0.018738   0.011824  -1.585 0.114254    
## MASQ_AD         -0.009138   0.008966  -1.019 0.309022    
## MASQ_GD          0.038859   0.009872   3.936 0.000106 ***
## RSQ_Score_Fixed  0.036743   0.015769   2.330 0.020576 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.124 on 259 degrees of freedom
## Multiple R-squared:  0.1168, Adjusted R-squared:  0.1032 
## F-statistic: 8.562 on 4 and 259 DF,  p-value: 1.669e-06
confint(arsq_diff)
##                        2.5 %      97.5 %
## (Intercept)      2.857658512 4.094307469
## MASQ_AA         -0.042021126 0.004545893
## MASQ_AD         -0.026793278 0.008516325
## MASQ_GD          0.019419136 0.058298540
## RSQ_Score_Fixed  0.005690004 0.067795418
arsq_diff2 <- lm(data = ear2, OverallLikelyEnd_Avg ~ MASQ_AA + MASQ_AD + MASQ_GD + RSQ_Score_Fixed)
summary(arsq_diff2)
## 
## Call:
## lm(formula = OverallLikelyEnd_Avg ~ MASQ_AA + MASQ_AD + MASQ_GD + 
##     RSQ_Score_Fixed, data = ear2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.43669 -0.37254  0.09387  0.41217  1.31834 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      3.9337751  0.1761361  22.334  < 2e-16 ***
## MASQ_AA          0.0009279  0.0066325   0.140  0.88885    
## MASQ_AD          0.0034060  0.0050292   0.677  0.49885    
## MASQ_GD          0.0016636  0.0055376   0.300  0.76410    
## RSQ_Score_Fixed -0.0253923  0.0088457  -2.871  0.00444 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6307 on 259 degrees of freedom
## Multiple R-squared:  0.03215,    Adjusted R-squared:  0.0172 
## F-statistic: 2.151 on 4 and 259 DF,  p-value: 0.075
confint(arsq_diff2)
##                        2.5 %       97.5 %
## (Intercept)      3.586933989  4.280616200
## MASQ_AA         -0.012132725  0.013988441
## MASQ_AD         -0.006497262  0.013309202
## MASQ_GD         -0.009240878  0.012568020
## RSQ_Score_Fixed -0.042810882 -0.007973655

Correlation table

From Study 1b for the correlation table

ear2 %>%
      select(MASQ_AD, MASQ_AA, MASQ_GD,
             RosenbergSelfEsteem_Sum, 
             RSQ_Score_Fixed,
             Explicit_OverallDifficulty_Avg, 
             Explicit_OverallNegEmo_Avg,
             Ghost_OverallDifficulty_Avg, 
             Ghost_OverallNegEmo_Avg) %>%
  corrr::correlate(use = "pairwise.complete.obs", 
                 method = "pearson") %>%
  dplyr::select(term, Explicit_OverallDifficulty_Avg, 
             Explicit_OverallNegEmo_Avg,
             Ghost_OverallDifficulty_Avg, 
             Ghost_OverallNegEmo_Avg) %>%
  filter(term %in% c("MASQ_AD", "MASQ_AA", "MASQ_GD",
             "RosenbergSelfEsteem_Sum",
             "RSQ_Score_Fixed")) %>%
  corrr::fashion() %>%
  gt::gt()
term Explicit_OverallDifficulty_Avg Explicit_OverallNegEmo_Avg Ghost_OverallDifficulty_Avg Ghost_OverallNegEmo_Avg
MASQ_AD .11 .02 .03 .08
MASQ_AA .12 .17 .15 .10
MASQ_GD .30 .27 .24 .24
RosenbergSelfEsteem_Sum -.30 -.23 -.19 -.21
RSQ_Score_Fixed .25 .16 .19 .17
# and the p-value / stats on them
ear2 %>%
  select(Explicit_OverallDifficulty_Avg, 
         Explicit_OverallNegEmo_Avg,
         Ghost_OverallDifficulty_Avg, 
         Ghost_OverallNegEmo_Avg, 
         MASQ_AD, MASQ_AA, MASQ_GD,
         RosenbergSelfEsteem_Sum, 
         RSQ_Score_Fixed) %>%
  pivot_longer(
    cols = c(Explicit_OverallDifficulty_Avg, 
             Explicit_OverallNegEmo_Avg,
             Ghost_OverallDifficulty_Avg, 
             Ghost_OverallNegEmo_Avg), 
    names_to = "outcomes", 
    values_to = "out_val") %>%
  pivot_longer(
    cols = c(MASQ_AD, MASQ_AA, MASQ_GD,
           RosenbergSelfEsteem_Sum, 
           RSQ_Score_Fixed), 
    names_to = "predictors",
    values_to = "pred_val"
  ) %>%
  nest(data = -c(outcomes, predictors)) %>%
  mutate(correlation = map(data, 
                  ~ cor.test(.x$out_val, .x$pred_val)), 
         tidied = map(correlation, broom::tidy)) %>%
  unnest(tidied) %>%
  select(outcomes, predictors, df = parameter,
         estimate, conf.low, conf.high, p.value) %>%
  gt::gt() %>%
  gt::cols_merge(columns = c(estimate, conf.low, 
                             conf.high), 
                 pattern = "{1} [{2}, {3}]") %>%
  gt::cols_label(
    estimate = md("*r* [95% CI]"),
    df = md("*df*"),
    p.value = md("*p*")
  ) %>%
  gt::sub_small_vals(columns = c(estimate, 
                                 conf.low, 
                                 conf.high), 
                     threshold = .01) %>%
  gt::sub_small_vals(columns = p.value, 
                     threshold = .001, 
                     small_pattern = "<.001") %>%
  gt::fmt_number(p.value, decimals = 3) %>%
  gt::fmt_number(c(estimate, conf.low, conf.high),
                 decimals = 2)
outcomes predictors df r [95% CI] p
Explicit_OverallDifficulty_Avg MASQ_AD 262 0.11 [−0.01, 0.23] 0.072
Explicit_OverallDifficulty_Avg MASQ_AA 262 0.12 [−0.01, 0.23] 0.061
Explicit_OverallDifficulty_Avg MASQ_GD 262 0.30 [0.19, 0.41] <.001
Explicit_OverallDifficulty_Avg RosenbergSelfEsteem_Sum 259 −0.30 [−0.41, −0.19] <.001
Explicit_OverallDifficulty_Avg RSQ_Score_Fixed 262 0.25 [0.13, 0.36] <.001
Explicit_OverallNegEmo_Avg MASQ_AD 262 0.02 [−0.10, 0.14] 0.777
Explicit_OverallNegEmo_Avg MASQ_AA 262 0.17 [0.05, 0.28] 0.006
Explicit_OverallNegEmo_Avg MASQ_GD 262 0.27 [0.16, 0.38] <.001
Explicit_OverallNegEmo_Avg RosenbergSelfEsteem_Sum 259 −0.23 [−0.34, −0.11] <.001
Explicit_OverallNegEmo_Avg RSQ_Score_Fixed 262 0.16 [0.04, 0.27] 0.011
Ghost_OverallDifficulty_Avg MASQ_AD 262 0.03 [−0.09, 0.15] 0.600
Ghost_OverallDifficulty_Avg MASQ_AA 262 0.15 [0.03, 0.27] 0.014
Ghost_OverallDifficulty_Avg MASQ_GD 262 0.24 [0.13, 0.35] <.001
Ghost_OverallDifficulty_Avg RosenbergSelfEsteem_Sum 259 −0.19 [−0.30, −0.07] 0.002
Ghost_OverallDifficulty_Avg RSQ_Score_Fixed 262 0.19 [0.07, 0.30] 0.002
Ghost_OverallNegEmo_Avg MASQ_AD 262 0.08 [−0.04, 0.20] 0.180
Ghost_OverallNegEmo_Avg MASQ_AA 262 0.10 [−0.02, 0.22] 0.089
Ghost_OverallNegEmo_Avg MASQ_GD 262 0.24 [0.12, 0.35] <.001
Ghost_OverallNegEmo_Avg RosenbergSelfEsteem_Sum 259 −0.21 [−0.33, −0.09] <.001
Ghost_OverallNegEmo_Avg RSQ_Score_Fixed 262 0.17 [0.05, 0.29] 0.006

Study 2

ear3 <- read_csv(here::here("data and codebooks", "study2_processed.csv"))

Contrary to predictions, self-esteem was not significantly correlated with difficulty rejecting

cor.test(ear3$rse, ear3$difficulty)
## 
##  Pearson's product-moment correlation
## 
## data:  ear3$rse and ear3$difficulty
## t = -0.052032, df = 252, p-value = 0.9585
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1263113  0.1198552
## sample estimates:
##         cor 
## -0.00327767

Self-esteem was, however, negatively correlated with negative emotions experienced while rejecting

cor.test(ear3$rse, ear3$neg_emotions)
## 
##  Pearson's product-moment correlation
## 
## data:  ear3$rse and ear3$neg_emotions
## t = -3.6047, df = 252, p-value = 0.0003766
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.3353794 -0.1011069
## sample estimates:
##        cor 
## -0.2214357

Contrary to predictions, rejection sensitivity was not significantly correlated with difficulty rejecting

cor.test(ear3$arsq_full, ear3$difficulty)
## 
##  Pearson's product-moment correlation
## 
## data:  ear3$arsq_full and ear3$difficulty
## t = 0.61522, df = 252, p-value = 0.539
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.08476262  0.16104288
## sample estimates:
##        cor 
## 0.03872595

Rejection sensitivity was, however, positively correlated with negative emotions experienced while rejecting

cor.test(ear3$arsq_full, ear3$neg_emotions)
## 
##  Pearson's product-moment correlation
## 
## data:  ear3$arsq_full and ear3$neg_emotions
## t = 3.6408, df = 252, p-value = 0.0003298
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1033008 0.3373457
## sample estimates:
##       cor 
## 0.2235431

A logistic regression did not find a significant effect of adult RSQ score predicting the method participants had used to reject

arsq_type_reg <- ear3 %>%
  filter(reject_method %in% c("direct", "indirect")) %>%
  mutate(reject_method = factor(reject_method)) %>%
  glm(reject_method ~ arsq_full, 
     family = "binomial",
     data = .)
summary(arsq_type_reg)
## 
## Call:
## glm(formula = reject_method ~ arsq_full, family = "binomial", 
##     data = .)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.3588  -0.9869  -0.9037   1.3301   1.5433  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -1.03197    0.34489  -2.992  0.00277 **
## arsq_full    0.04466    0.02456   1.818  0.06906 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 327.19  on 244  degrees of freedom
## Residual deviance: 323.84  on 243  degrees of freedom
##   (4 observations deleted due to missingness)
## AIC: 327.84
## 
## Number of Fisher Scoring iterations: 4

general distress was positively correlated with difficulty experienced rejecting others

cor.test(ear3$masq_gd, ear3$difficulty)
## 
##  Pearson's product-moment correlation
## 
## data:  ear3$masq_gd and ear3$difficulty
## t = 3.3463, df = 256, p-value = 0.0009417
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.08471005 0.31887023
## sample estimates:
##       cor 
## 0.2047173

General distress was also positively correlated with negative emotions experienced while rejecting

cor.test(ear3$masq_gd, ear3$neg_emotions)
## 
##  Pearson's product-moment correlation
## 
## data:  ear3$masq_gd and ear3$neg_emotions
## t = 7.0179, df = 256, p-value = 2.012e-11
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2939756 0.4993109
## sample estimates:
##       cor 
## 0.4016796

Anhedonic depression was not correlated with difficulty rejecting others

cor.test(ear3$masq_ad, ear3$difficulty)
## 
##  Pearson's product-moment correlation
## 
## data:  ear3$masq_ad and ear3$difficulty
## t = -0.70908, df = 256, p-value = 0.4789
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.16550402  0.07827447
## sample estimates:
##         cor 
## -0.04427383

[Anhedonic depression was] positively correlated with negative emotions experienced while rejecting

cor.test(ear3$masq_ad, ear3$neg_emotions)
## 
##  Pearson's product-moment correlation
## 
## data:  ear3$masq_ad and ear3$neg_emotions
## t = 2.1917, df = 256, p-value = 0.02931
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.01381543 0.25363293
## sample estimates:
##       cor 
## 0.1357115

A logistic regression did not find a significant effect of MASQ-AD predicting the method participants had used to reject

ad_type_reg <- ear3 %>%
  filter(reject_method %in% c("direct", "indirect")) %>%
  mutate(reject_method = factor(reject_method)) %>%
  glm(reject_method ~ masq_ad, 
     family = "binomial",
     data = .)
summary(ad_type_reg)
## 
## Call:
## glm(formula = reject_method ~ masq_ad, family = "binomial", data = .)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.0876  -1.0048  -0.9325   1.3439   1.5534  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -1.15011    0.60956  -1.887   0.0592 .
## masq_ad      0.01870    0.01621   1.154   0.2486  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 332.02  on 248  degrees of freedom
## Residual deviance: 330.67  on 247  degrees of freedom
## AIC: 334.67
## 
## Number of Fisher Scoring iterations: 4

anxiety symptoms on the MASQ were positively correlated with the negative emotions experienced while rejecting

cor.test(ear3$masq_aa, ear3$neg_emotions)
## 
##  Pearson's product-moment correlation
## 
## data:  ear3$masq_aa and ear3$neg_emotions
## t = 5.1136, df = 256, p-value = 6.196e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.189347 0.411267
## sample estimates:
##       cor 
## 0.3044324

anxiety was also negatively associated with how difficult participants found it to reject others

cor.test(ear3$masq_aa, ear3$difficulty)
## 
##  Pearson's product-moment correlation
## 
## data:  ear3$masq_aa and ear3$difficulty
## t = 2.4937, df = 256, p-value = 0.01327
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03248172 0.27102390
## sample estimates:
##       cor 
## 0.1539959

A logistic regression did not find a significant effect of anxiety symptoms predicting the method participants had used to reject

aa_type_reg <- ear3 %>%
  filter(reject_method %in% c("direct", "indirect")) %>%
  mutate(reject_method = factor(reject_method)) %>%
  glm(reject_method ~ masq_aa, 
     family = "binomial",
     data = .)
summary(aa_type_reg)
## 
## Call:
## glm(formula = reject_method ~ masq_aa, family = "binomial", data = .)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.2381  -0.9826  -0.9164   1.3526   1.4854  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -0.94761    0.35568  -2.664  0.00772 **
## masq_aa      0.02475    0.01690   1.465  0.14288   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 332.02  on 248  degrees of freedom
## Residual deviance: 329.87  on 247  degrees of freedom
## AIC: 333.87
## 
## Number of Fisher Scoring iterations: 4

even with covariates self-esteem was associated with negative emotions after rejecting

rse_neg_mod <- lm(data = ear3, 
   neg_emotions ~ rse + masq_gd + masq_aa + masq_ad)
summary(rse_neg_mod)
## 
## Call:
## lm(formula = neg_emotions ~ rse + masq_gd + masq_aa + masq_ad, 
##     data = ear3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5431 -0.9674  0.0546  0.9491  3.5584 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.271943   1.242208  -0.219   0.8269    
## rse          0.055539   0.023623   2.351   0.0195 *  
## masq_gd      0.083651   0.015582   5.369 1.82e-07 ***
## masq_aa      0.021772   0.014910   1.460   0.1455    
## masq_ad      0.008386   0.015499   0.541   0.5890    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.456 on 249 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.2047, Adjusted R-squared:  0.192 
## F-statistic: 16.03 on 4 and 249 DF,  p-value: 1.088e-11
confint(rse_neg_mod)
##                    2.5 %     97.5 %
## (Intercept) -2.718516611 2.17463049
## rse          0.009012054 0.10206505
## masq_gd      0.052962216 0.11433895
## masq_aa     -0.007594096 0.05113734
## masq_ad     -0.022140660 0.03891218

Given that participants indicated both direct rejection and indirect rejection (ghosting), we included an interaction term in the model of method of rejection interacting with self-esteem. We found that the interaction was significant

rse_neg_inter_mod <- lm(data = ear3 %>% filter(reject_method != "different"), neg_emotions ~ rse * reject_method + masq_gd + masq_ad + masq_aa)
summary(rse_neg_inter_mod)
## 
## Call:
## lm(formula = neg_emotions ~ rse * reject_method + masq_gd + masq_ad + 
##     masq_aa, data = ear3 %>% filter(reject_method != "different"))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2064 -0.9245  0.0652  0.8683  3.6049 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                0.34718    1.29853   0.267   0.7894    
## rse                        0.03158    0.02632   1.200   0.2313    
## reject_methodindirect     -1.59736    0.70314  -2.272   0.0240 *  
## masq_gd                    0.08038    0.01598   5.031 9.62e-07 ***
## masq_ad                    0.01104    0.01595   0.692   0.4894    
## masq_aa                    0.02292    0.01515   1.513   0.1317    
## rse:reject_methodindirect  0.06196    0.02720   2.278   0.0236 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.463 on 237 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.2132, Adjusted R-squared:  0.1933 
## F-statistic:  10.7 on 6 and 237 DF,  p-value: 1.586e-10
confint(rse_neg_inter_mod)
##                                  2.5 %      97.5 %
## (Intercept)               -2.210946638  2.90531577
## rse                       -0.020267208  0.08343486
## reject_methodindirect     -2.982552918 -0.21216029
## masq_gd                    0.048907079  0.11184966
## masq_ad                   -0.020379259  0.04246849
## masq_aa                   -0.006931243  0.05277650
## rse:reject_methodindirect  0.008373134  0.11554873

individuals who had used indirect methods to reject experienced more negative emotions if they had higher self-esteem … while those who used direct methods did not experience a significant difference

rse_indirect <- lm(data = filter(ear3, reject_method == "indirect"), neg_emotions ~ rse + masq_gd + masq_ad + masq_aa)
summary(rse_indirect)
## 
## Call:
## lm(formula = neg_emotions ~ rse + masq_gd + masq_ad + masq_aa, 
##     data = filter(ear3, reject_method == "indirect"))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3138 -0.7223 -0.0060  0.9419  3.0422 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept) -2.616643   2.365722  -1.106  0.27171   
## rse          0.122059   0.045431   2.687  0.00863 **
## masq_gd      0.109083   0.032461   3.360  0.00115 **
## masq_ad      0.009898   0.026466   0.374  0.70931   
## masq_aa      0.017360   0.026344   0.659  0.51164   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.46 on 88 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.203,  Adjusted R-squared:  0.1668 
## F-statistic: 5.603 on 4 and 88 DF,  p-value: 0.0004585
confint(rse_indirect)
##                   2.5 %     97.5 %
## (Intercept) -7.31801806 2.08473204
## rse          0.03177525 0.21234251
## masq_gd      0.04457305 0.17359293
## masq_ad     -0.04269746 0.06249324
## masq_aa     -0.03499305 0.06971266
rse_direct <- lm(data = filter(ear3, reject_method == "direct"), neg_emotions ~ rse + masq_gd + masq_ad + masq_aa)
summary(rse_direct)
## 
## Call:
## lm(formula = neg_emotions ~ rse + masq_gd + masq_ad + masq_aa, 
##     data = filter(ear3, reject_method == "direct"))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1923 -0.9806  0.1328  0.8421  3.6212 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.75489    1.53691   0.491  0.62404    
## rse          0.02249    0.02926   0.769  0.44326    
## masq_gd      0.07049    0.01854   3.802  0.00021 ***
## masq_ad      0.01417    0.02022   0.701  0.48451    
## masq_aa      0.02180    0.01894   1.151  0.25170    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.472 on 146 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.2258, Adjusted R-squared:  0.2046 
## F-statistic: 10.64 on 4 and 146 DF,  p-value: 1.349e-07
confint(rse_direct)
##                   2.5 %     97.5 %
## (Intercept) -2.28258567 3.79235749
## rse         -0.03533225 0.08032017
## masq_gd      0.03384515 0.10712867
## masq_ad     -0.02579285 0.05413815
## masq_aa     -0.01563622 0.05922927

The association between rejection sensitivity and negative emotions experienced while rejecting was not significant when the MASQ subscales were included in the regression

rsq_negemo_mod <- lm(data = ear3, 
   neg_emotions ~ arsq_full + masq_gd + masq_aa + masq_ad)
summary(rsq_negemo_mod)
## 
## Call:
## lm(formula = neg_emotions ~ arsq_full + masq_gd + masq_aa + masq_ad, 
##     data = ear3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8896 -0.9589  0.1845  0.9599  3.5062 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.259790   0.483233   4.676 4.79e-06 ***
## arsq_full    0.009444   0.020883   0.452   0.6515    
## masq_gd      0.056565   0.013236   4.274 2.74e-05 ***
## masq_aa      0.025940   0.015300   1.695   0.0912 .  
## masq_ad     -0.008051   0.013905  -0.579   0.5631    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.481 on 249 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.1858, Adjusted R-squared:  0.1727 
## F-statistic: 14.21 on 4 and 249 DF,  p-value: 1.857e-10

when rejection method was included in the regression with MASQ covariates, there was a significant interaction

rsq_rejmetho_mod <- lm(data = ear3 %>% filter(reject_method != "different"), neg_emotions ~ arsq_full * reject_method + masq_gd + masq_ad + masq_aa)
summary(rsq_rejmetho_mod)
## 
## Call:
## lm(formula = neg_emotions ~ arsq_full * reject_method + masq_gd + 
##     masq_ad + masq_aa, data = ear3 %>% filter(reject_method != 
##     "different"))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6526 -0.9533  0.1933  0.9702  3.6320 
## 
## Coefficients:
##                                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      1.965223   0.519045   3.786 0.000194 ***
## arsq_full                        0.042761   0.026266   1.628 0.104857    
## reject_methodindirect            0.886240   0.516390   1.716 0.087428 .  
## masq_gd                          0.053298   0.013495   3.950 0.000103 ***
## masq_ad                         -0.008768   0.014300  -0.613 0.540362    
## masq_aa                          0.028357   0.015558   1.823 0.069615 .  
## arsq_full:reject_methodindirect -0.076711   0.036571  -2.098 0.037001 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.489 on 237 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.1938, Adjusted R-squared:  0.1734 
## F-statistic: 9.497 on 6 and 237 DF,  p-value: 2.366e-09
confint(rsq_rejmetho_mod)
##                                        2.5 %       97.5 %
## (Intercept)                      0.942691696  2.987754789
## arsq_full                       -0.008984166  0.094506876
## reject_methodindirect           -0.131059246  1.903540191
## masq_gd                          0.026713494  0.079883009
## masq_ad                         -0.036940517  0.019403775
## masq_aa                         -0.002292667  0.059005747
## arsq_full:reject_methodindirect -0.148757207 -0.004665102

Neither simple effect had a significant regression coefficient when MASQ subscales were included in the regression

summary(lm(data = filter(ear3, reject_method == "direct"), neg_emotions ~ arsq_full + masq_gd + masq_aa + masq_ad))
## 
## Call:
## lm(formula = neg_emotions ~ arsq_full + masq_gd + masq_aa + masq_ad, 
##     data = filter(ear3, reject_method == "direct"))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6751 -0.9769  0.2159  0.9555  3.6957 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  1.847896   0.632060   2.924  0.00402 **
## arsq_full    0.038513   0.028208   1.365  0.17428   
## masq_gd      0.054353   0.016271   3.341  0.00106 **
## masq_aa      0.022176   0.020072   1.105  0.27108   
## masq_ad     -0.001578   0.019047  -0.083  0.93407   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.493 on 144 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.2223, Adjusted R-squared:  0.2007 
## F-statistic: 10.29 on 4 and 144 DF,  p-value: 2.339e-07
summary(lm(data = filter(ear3, reject_method == "indirect"), neg_emotions ~ arsq_full + masq_gd + masq_aa + masq_ad))
## 
## Call:
## lm(formula = neg_emotions ~ arsq_full + masq_gd + masq_aa + masq_ad, 
##     data = filter(ear3, reject_method == "indirect"))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1265 -0.6867  0.1250  0.9569  3.2197 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.00308    0.82269   3.650 0.000439 ***
## arsq_full   -0.02992    0.03359  -0.891 0.375473    
## masq_gd      0.05028    0.02454   2.049 0.043360 *  
## masq_aa      0.03693    0.02531   1.459 0.148070    
## masq_ad     -0.01661    0.02213  -0.751 0.454864    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.501 on 90 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.1497, Adjusted R-squared:  0.1119 
## F-statistic: 3.961 on 4 and 90 DF,  p-value: 0.005239

Without covariates, and mirroring the trend that was apparent in the full model, higher rejection sensitivity was associated with decreased negative emotions for direct rejection methods … but not for indirect methods

summary(lm(data = filter(ear3, reject_method == "direct"), neg_emotions ~ arsq_full))
## 
## Call:
## lm(formula = neg_emotions ~ arsq_full, data = filter(ear3, reject_method == 
##     "direct"))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6871 -1.0577  0.1127  1.1992  3.4492 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.91865    0.32889   8.874 2.22e-15 ***
## arsq_full    0.09810    0.02467   3.976  0.00011 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.592 on 147 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.0971, Adjusted R-squared:  0.09096 
## F-statistic: 15.81 on 1 and 147 DF,  p-value: 0.0001095
confint(lm(data = filter(ear3, reject_method == "direct"), neg_emotions ~ arsq_full))
##                  2.5 %    97.5 %
## (Intercept) 2.26867966 3.5686145
## arsq_full   0.04933942 0.1468515
summary(lm(data = filter(ear3, reject_method == "indirect"), neg_emotions ~ arsq_full))
## 
## Call:
## lm(formula = neg_emotions ~ arsq_full, data = filter(ear3, reject_method == 
##     "indirect"))
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.444 -1.274  0.272  1.095  2.829 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.94879    0.44285   8.917    4e-14 ***
## arsq_full    0.01834    0.03035   0.604    0.547    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.598 on 93 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.00391,    Adjusted R-squared:  -0.0068 
## F-statistic: 0.3651 on 1 and 93 DF,  p-value: 0.5472
confint(lm(data = filter(ear3, reject_method == "indirect"), neg_emotions ~ arsq_full))
##                   2.5 %     97.5 %
## (Intercept)  3.06938743 4.82820048
## arsq_full   -0.04193542 0.07861667

Correlation table

From Study 2 for the correlation table

ear3 %>%
      select(masq_ad, masq_aa, masq_gd, 
             rse, arsq_full, 
             difficulty, neg_emotions) %>%
  corrr::correlate(use = "pairwise.complete.obs", 
                 method = "pearson") %>%
  dplyr::select(term, difficulty, neg_emotions) %>%
  filter(term %in% c("masq_ad", "masq_aa", "masq_gd",
             "rse", "arsq_full")) %>%
  corrr::fashion() %>%
  gt::gt()
term difficulty neg_emotions
masq_ad -.04 .14
masq_aa .15 .30
masq_gd .20 .40
rse -.00 -.22
arsq_full .04 .22
# and the p-value / stats on them
ear3 %>%
  select(masq_ad, masq_aa, masq_gd, rse, arsq_full, 
         difficulty, neg_emotions) %>%
  pivot_longer(
    cols = c(difficulty, neg_emotions), 
    names_to = "outcomes", 
    values_to = "out_val") %>%
  pivot_longer(
    cols = c(masq_ad, masq_aa, masq_gd, rse, 
             arsq_full), 
    names_to = "predictors",
    values_to = "pred_val"
  ) %>%
  nest(data = -c(outcomes, predictors)) %>%
  mutate(correlation = map(data, 
                  ~ cor.test(.x$out_val, .x$pred_val)), 
         tidied = map(correlation, broom::tidy)) %>%
  unnest(tidied) %>%
  select(outcomes, predictors, df = parameter,
         estimate, conf.low, conf.high, p.value) %>%
  gt::gt() %>%
  gt::cols_merge(columns = c(estimate, conf.low, 
                             conf.high), 
                 pattern = "{1} [{2}, {3}]") %>%
  gt::cols_label(
    estimate = md("*r* [95% CI]"),
    df = md("*df*"),
    p.value = md("*p*")
  ) %>%
  gt::sub_small_vals(columns = c(estimate, 
                                 conf.low, 
                                 conf.high), 
                     threshold = .01) %>%
  gt::sub_small_vals(columns = p.value, 
                     threshold = .001, 
                     small_pattern = "<.001") %>%
  gt::fmt_number(p.value, decimals = 3) %>%
  gt::fmt_number(c(estimate, conf.low, conf.high),
                 decimals = 2)
outcomes predictors df r [95% CI] p
difficulty masq_ad 256 −0.04 [−0.17, 0.08] 0.479
difficulty masq_aa 256 0.15 [0.03, 0.27] 0.013
difficulty masq_gd 256 0.20 [0.08, 0.32] <.001
difficulty rse 252 0.00 [−0.13, 0.12] 0.959
difficulty arsq_full 252 0.04 [−0.08, 0.16] 0.539
neg_emotions masq_ad 256 0.14 [0.01, 0.25] 0.029
neg_emotions masq_aa 256 0.30 [0.19, 0.41] <.001
neg_emotions masq_gd 256 0.40 [0.29, 0.50] <.001
neg_emotions rse 252 −0.22 [−0.34, −0.10] <.001
neg_emotions arsq_full 252 0.22 [0.10, 0.34] <.001